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In this article, by using coding and combinatorial techniques, an approximate

formula for the weight distribution of decodable words of most linear block codes

is evaluated. This formula is then used to give an approximate expression for the

decoder error probability PE(u) of linear block codes, given that an error pattern

of weight u has occurred. It is shown that PE(u) approaches the constant Q as u

gets large, where Q is the probability that a completely random error pattern will

cause decoder error.

I. Introduction

Coding is used in a digital communication system to

detect and correct errors introduced in the data stream by

channel noise. An important parameter to evaluate the

performance of a code is its decoder error probability. Let

C be a linear (n,k,d) code over GF(q), and C -L be its

(n, n- k, d J-) dual code. Let t be the number of errors the

code is designed to correct. Let G be the generator matrix

of C. Let Au denote the number of codewords of weight u,

and Du denote the number of decodable words of weight

u. Decodable words are defined as all words lying within

distance t from a codeword. If the decoder is assumed to be

a bounded distance decoder, then the weight distribution

for the decodable words can be used to find the decoder

error probability of the code.

When a codeword _c E C is transmitted over a com-

munication channel, channel noise may corrupt the trans-

mitted signals. As a result, the receiver gets a corrupted

version of the transmitted codeword _c+ e_, where e_ is an

error pattern of some weight u. If u _ t, then a bounded

distance decoder on the receiver's end detects and corrects

the error e_, and recovers _c. If u > t, the decoder fails, and

it either

(1) Detects the presence of the error pattern e.c, but is

unable to correct it, or

(2) Misinterprets the received pattern c+e_ for some other

codeword c/if the received pattern falls into the radius

t of the Hamming sphere around d.

Case (2) is, in most cases, more serious than case (1).

This can occur when an error pattern e is of weight u >_

d- t. As pointed out in [1] and [2], if all error patterns of

weight u are equally probable, the decoder error probabil-
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ity given that an error pattern of weight u occurs, denoted

by PE(u), is given by the following expression:

Du

PE(U)-- (:)(q_ i) _ d-t < u < n (i)

In this article, by using combinatorial and coding tech-

niques, an approximate formula for the weight distribution
of decodable words for most linear block codes is evaluated.

This formula together with Eq. (1) gives an approximate

formula for the decoder error probability Pe(u) for most
linear block codes. It is also shown that

Re(u) 0

where Q is the probability that a completely random error

pattern will cause decoder error. That is,

Q _ (qk _ 1)V,(t) _ q_rV,,(t ) (2)
q,_

where r = n - k is the code's redundancy and Vn(t) =
t

_'_,=o (?)(q - 1) I is the volume of a Hamming sphere of
radius t.

II. Mathematical Preliminaries

In this section, combinatorial and coding techniques

required to derive the results in later sections are intro-

duced. These techniques are similar to those used in [6] to

obtain the weight distribution of linear block codes.

A. Principle of Inclusion and Exclusion

Let X be a set of N objects, and P(1), P(2),..., P(u)

be a set of u properties. Let N(il, i2, ..., it) be the number

of objects with properties P(il), P(i2),...,P(ir). The

number of objects N(0) with none of the properties is given

by [3]:

N(O) = N - _-_N(i) + _ N(il,i_) +... + (-1) r
i ix<i2

x y_ N(il,i2,...,i_)+...
Q<iz...<ir

+ (-1)UN(1,2,3,...,u) (3)

There are u + 1 terms on the right-hand side of Eq. (3),

with the 0th term representing the total number of objects

in X. If all terms beyond the rth term on the right-hand

side of Eq. (3) are ignored, then the resulting truncated

sum is an upper bound when r is even, or a lower bound if

r is odd. Thus the maximum error magnitude introduced

in the inclusion and exclusion formula by ignoring all terms

beyond the rth term does not exceed the magnitude of the

(r+ 1)th term. This fact will be used later to upper bound

the magnitude of the errors of the approximate weight dis-
tribution formula.

B. Facts on Coding Theory

A linear (., d) codeoverCF(q) canbe generated
by a k x n generator matrix G, not necessarily unique and

such that rank(G) = k. Let l be the maximum number

such that no I or fewer columns of G add to zero. Then

I < k (4)

Equality in Eq. (4) is achieved in the case of maximum

distance separable (MDS) codes. Since G is the parity-

check matrix of C "L, l = d "L- 1. Let colit, COil2,..., colii

be any j particular columns of G, j < i < k. It is obvious

that there exists a k x n generator matrix G' of C and a

k x k nonsingular matrix K such that

G' = KG (5)

and COil1, coli2,...,coli _ of G' form a k x j submatrix

of the form (.Io.) . This fact guarantees that given any

pattern ofj symbols on the il th, i2th,..., ij th coordinates,

the number of codewords with the j-symbol pattern on

the ilth, i2th, ..., i./th coordinates equals q_-J for j < I.

This fact is important in the next section to evaluate the
cardinalities of some sets of decodable words.

III. Derivation of Formulae

Let D be the set of decodable words of C. Let _dbe a

decodable word with Hamming weight u, u > n-l. Let the

coordinates ofd be indexed by {0, 1,..., n- 1}. Then d has

v zeros (v < l), where v = n - u. Let V be a set of v coor-

dinates, IYl = v. Let {il,i2,...,ij} C_ {0,1,...,n-1}-Y

be a set of j coordinates. Define S(il,i2,...,ij) = {d :
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_d E D and d has zeros in VU {il, i2,...,ij}}. A decod-

able word _d E S(il,i2,...,ij) always has at least v + j

zeros. For 0 < j < l-v, the number of zeros in the de-

codable words of S(il,i2 .... ,i j) is less than or equal to

I. Now, since all words lying within the Hamming spheres

(with volume V,(t)) that surround codewords are decod-

able words, there are V,(t) disjoint cosets that contain de-

codable words. Each coset can be constructed by adding a

coset leader a (Hamming weight ofa < t) to each codeword

in C. Thus from the discussion in Section II.B, for each

of the V,(t) different coset leaders (each corresponding to

a coset), there are qk-v-j codewords in C which, when

added to the coset lender, give decodable words with zeros

in the v + j coordinates. The number of decodable words

in S(it, i2,..., ij) is then given by

IS(ix, i2,..., i_)l = qk-_-_ V,(t)

for o<_j<__-v (8)

For l-v+l < j < n-v-d+t, the number of zeros in

the decodable words of S(il,i2,...,ij) exceeds l, and ap-

parently there is no simple expression for 18(i1, i2 .... , i¢)l.
For n-v-d+t+ 1 < j < n-v-t, the number

of zeros in a decodable word is greater than or equal to

n - d + t + 1, but less than or equal to n - t. Thus any

decodable word in S(ix, i2,... ,ij) has weight less than or

equal to d - t - 1. It is not hard to see that the elements

of S(il,i2,...,ij) cannot be decoded into a codeword of

weight other than 0. Therefore, S(il,i2,...,ij) contains

all words of weight less than or equal to t in the coordi-

nates {0, 1, ...n - 1} - (V O {il,i2,... ,ij}). Thus,

IS(h, i2,..., ij)[ = qU-_

forn-v-t+l<j<n-v (8)

In the cases for 0 < j < l-v, n-v-d+t+l <

j < n-v-t, and n-v-t+l < j < n-v, the set

ii,i_,...,ij can be chosen arbitrarily from a set of u =

n - v coordinates. Thus for every choice of j, there are

(_.) sets S(ii, i2,..., ij). By the principle of inclusion and

exclusion, the number of decodable words with exactly v

zeros in V, which is denoted by D_, is:

D'v = IS(O)I+ (-1) E IS(ii)l +... + (-1) r
it

x y_ IS(ii,i2,... ,ir)l
ia<i_<...<i,

+... + (-1)"-_s(ii,i2,...,i,__)

I-v n-v-d+t

= E(-1) "/(_)q'-_-JV_(t)+ E (-1)j
j=0 j=l-v+l

× E IS(ii,i2, ... ,ij)l
il<i2<...<ij

.. (;)±()+ E (-1)J n-v-j (q_l)i
i

jmn-v-dTt4-i i=0

IS(il,i2,...,ij)l=_-_(u_j)(q-1) i
i=O

"+ (_1)i qU- (91
jmn-v-t+l

forn-v-d+t+l<j<n-v-t (7)

For n-v-t+1 < j < n-v, since j is greater than or equal

to n - v - t + 1, the number of zeros v + j is greater than

or equal to n - t + 1. Therefore, the number of nonzero

components is less than t. Thus, all words with zeros on

V U {il, i2,..., ij} are decodable and thus

If all the terms beyond the l-v-1 terms are ignored in the

above inclusion and exclusion formu.la, Eq. (9) is reduced

to

I--v--1

lYV= E(-1)J(_)q'-_-JV,,(t)-bE1 (10)
j=0
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where for u > max{n-l, _ql(n - l) - 1}.

El - (-1)Z-V(l U_v)qk-tVn(t )

+
j=l--v+l il<...<ij

and IEll _< (t:v)qk-tVn(t) (from the discussion in Section

II.A). If E2 = _-_;=t_v(-1)J(_.)qk-_-JVn(t)is added and

subtracted from Eq. (10), one has

(q - 1)u Vn(t) + E1 -t- E2 (11)
n_- q_-_-_

If (,_v)q -> (,-_+1), that is, if u > q_:_A(n - l) - 1, E2 is a
sum of terms with alternate signs and descending magni-

_ ( _ _ k-tVn(t). Thustude. Then [E21 < _t-_)q

D_, - (q - 1)" Vn(t) + E (i2)
qn-k

where E = E1 + E2 and IEI < 2(t___)qk-_v.(t). D'v can

thus be approximated by _Vn(t), and the goodness
of approximation depends on how small the ratio R =

Eli(q- 1)Uq-(n-k)Vn(t)] is. By using the upper bound on

[El, an upper bound on this ratio is given by

2(n_ t)q k-t

R< (q_ 1)" (13)

Strictly speaking, the derivation of Eq. (14) is valid

only for u > max{n - l, q_:9-(n - l) - 1}. However, it is

observed that in most cases Eq. (14) is also a close ap-

proximation to Du for u considerably smaller than n - l

(as in the case of Reed-Solomon codes). The upper bound

of R derived above has a denominator term (q - 1) _' and

this indicates that this approximation formula is good for

nonbinary linear codes, and is not useful for binary linear

codes. The looseness of this approximation for binary lin-

ear codes is best illustrated by extended binary codes that

have only even weights. In the case of binary primitive

codes, Kasami et al. [4] generalized Sidel'nikov's approach

[5] and showed that the weights of most binary primitive

codes have approximate binomial distribution.

Cheung [6] later showed this is also true for nonbinary

codes. It is conjectured in this article that the approximate

Eq. (14) for the weight distribution of decodable words is

also good for binary primitive codes. For nonbinaxy linear

codes, the upper bound on R shows that the approxima-

tion in Eq. (14) is particularly good for codes with large

alphabet sets. The upper bound on R for the (31,15,17)

Reed-Solomon code over GF(32) is given in Table 1. The

weight distribution of decodable words and its approxima-

tion (using Eq. 14) of the (31,15,17) Reed-Solomon code

are given in Table 2.

Given the approximate formula of Du, an approxi-

mate decoder error probability PE(U) is obtained by sub-

stituting Eq. (14) into Eq. (1). It is observed that PE(u)

approximates the constant Q = q-rVn(t) as u gets large,

where Q is the probability that a completely random error

pattern will cause decoder error. An upper bound of R

given by Eq. (13) shows that PE(u) approaches Q "nearly

exponentially" (for nonbinary codes) as u increases.

Since v _< l, there are (_) = (:) ways to choose v zeros

from {0,1,... ,n- 1}. Then Du can be approximated by

the following expression:

D_ = Z DIv_q-('-k)(:) (q-1)_V"(t) (14)
IVl=n-u

IV. Conclusion

In this article, by using the inclusion and exclusion

principle, an approximate formula for the weight distri-

bution of decodable words of most linear block codes is

derived. The decoder error probability PE(u), which is a

function of D,, is then shown to approach the constant

Q as u gets large, where Q is the probability that a com-

pletely random error pattern will cause decoder error.
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